Finden Sie schnell wärmepumpe funktionsprinzip für Ihr Unternehmen: 193 Ergebnisse

Wärmepumpe Monoblock R32 - 9kW

Wärmepumpe Monoblock R32 - 9kW

- HIGH PERFORMANCE Vorlauftemperatur 60°C - Flüstermodus 42 dB(A) bei 2,1m - Kühlmittel R32 - Förderfähig - Integrierte elektrische Heizung 3kW - Automatische Messung der Leistungserzeugung (C.O.P) - Touchscreen-Bedienfeld und Steuerung per App - 5 Jahre Garantie Inkl. Zubehör: - Temperaturfühler - Datenleitung zwischen Außeneinheit & Inneneinheit - Heizstab - Wlanmodul - Sicherheitsgruppe - Wandhalterung Inneneinheit
Aldea ALD-HTIPC30 R290 Kältemittel: Umweltfreundliche Kühllösung

Aldea ALD-HTIPC30 R290 Kältemittel: Umweltfreundliche Kühllösung

Bei Aldea fühlen wir uns mit R290-Gas der Umweltverantwortung verpflichtet, um den CO2-Ausstoß zu reduzieren. Unsere Bigblue-Geräte arbeiten effizient (-25 °C bis 43 °C) und sorgen für hohe Wasseraustrittstemperaturen. Durch den Einsatz überlegener Inverter-Kompressortechnologie senken sie die Stromkosten. Ausgestattet mit hochwertigen Komponenten, darunter fortschrittliche Leiterplattenkühlung und modernste Verdampfer, garantieren sie effizientes Heizen, Warmwasser und Kühlen. Unsere mit WaterMark zertifizierten zweireihigen Plattenwärmetauscher erfüllen höchste Standards. Unsere Wärmepumpen sind mit Fernüberwachungs- und Steuerungssystemen kompatibel und bieten eine einfache Verwaltung. Mit der Cloud-Technologie können Benutzer aus der Ferne auf Parameter zugreifen, ideal für Industrieanlagen oder Hotels.
D-Glucosamin Hydrochloride (HCL)

D-Glucosamin Hydrochloride (HCL)

D-Glucosamin Hydrochloride (HCL)
Chemische Treibmittel - Mikrogranulat

Chemische Treibmittel - Mikrogranulat

Das Sortiment chemischer Treibmittel umfasst endotherme und exotherme Rezepturen als Pulverblends, Granulate oder Mikrogranulate zum Schäumen und gegen Einfall & Verzug.
Sensorkennlinie Drucksensor/Kraftsensor

Sensorkennlinie Drucksensor/Kraftsensor

Das Diagramm zeigt die Relation zwischen der Belastung in % FS (Druck/Kraft) und der Ausgangskapazität Cx des Sensors.
Druckübersetzer NT

Druckübersetzer NT

Der Druckübersetzer NT verfügt über einen Zustell- und einen Krafthub mit einer Übersetzung von 1:17,5, 1:25, 1:39 oder 1:61. Anwendung: Ersatz eines kleinen Hydraulikaggregates. Prinzip vom Druckübersetzer NT Unser Druckübersetzer besitzt zwei Kolben, der eine Kolben ist für den Zustellhub bzw. für den Schnellhub beim Arbeitszylinder zuständig und arbeitet als Medium-Wandler. Das bedeutet der Eingangsluftdruck wird 1:1 in Hydraulikduck umgewandelt. Der zweite Kolben arbeitet als Übersetzerkolben, mit einem vorher festgelegten Übersetzungsverhältnis. Dieser ist für den Krafthub am Arbeitszylinder zuständig. Durch die eingebauten Bypass-Ventile im Druckübersetzer kann der Kolben für den Zustellhub jederzeit, bei abfallendem Arbeitsdruck, Öl zum Arbeitszylinder nachfördern. Diese Bauweise erlaubt es, dass der Krafthub jederzeit wiederholt werden kann, ohne den Druckübersetzer und Arbeitszylinder in Grundstellung zu fahren. Der neue Druckübersetzer NT bietet folgende Vorteile: • Kostenersparnis durch Einsparung eines Hydraulikaggregates: Mit unserem neu entwickelten Druckübersetzer lassen sich herkömmliche Hydraulikzylinder mit Eil- und Krafthub betreiben. Durch den Einsatz von zwei Druckübersetzern können sogar doppeltwirkende Hydraulikzylinder im Eil- und Krafthub betrieben werden. • Einfache Ansteuerung: Diese erfolgt durch ein 3/2-Wegeventil für den Zustellhub und ein 5/2-Wegeventil für den Krafthub. • Beliebige Wiederholung des Krafthubes: Mit Hilfe einer Steuerung kann der Krafthub über das 5/2-Wegeventil beliebig oft wiederholt werden. Hierzu muss das 3/2-Wegeventil geschaltet bleiben. • Eingebaute Bypass-Ventile verhindern eine Vakuumbildung beim Stanzen und ermöglichen eine beliebige Wiederholung des Krafthubes. • Der Übersetzerzylinder ist mit Signalgabe ausgestattet, welche zur Überwachung, bzw. zur Wiederholung des Krafthubes dient. • Ein geschlossenes Öl-System, sowie eine absolute Öl-/ Lufttrennung gewährleisten ein Höchstmaß an Betriebssicherheit. • Durch die Verwendung von Dichtungsaufnahmen entstehen geringe Lagerhaltungskosten, für die verschiedenen Übersetzungsverhältnisse, da alle wesentlichen Teile identisch sind. Auch ein nachträglicher Umbau auf ein anderes Übersetzungsverhältnis ist möglich • Das Ölvolumen für den Zustell- und Krafthub, sowie die benötigte Ölreserve für einen sicheren Betrieb des Arbeitszylinders, kann vom Anwender gegen Aufpreis festgelegt werden. Eine Liste über die Standard-Typen folgt. • Die Auslieferung erfolgt im gefüllten Zustand (falls nicht gewünscht, bitte bei der Bestellung angeben)
Fatigue und Betriebsfestigkeit FEM

Fatigue und Betriebsfestigkeit FEM

Wir berechnen die Betriebsfestigkeit von Bauteilen aus Metall oder Faserverbund.
Einbausysteme für Druckleitungen

Einbausysteme für Druckleitungen

Unser C 1000 ES reinigt Öl im Hauptstrom mit der Reinheit eines Nebenstromfilters. Die Nebenstromfiltration von technischen Ölen ist die effektivste und sauberste Art der Filtration. Ein gewöhnlicher Hauptstromfilter kann, weil er dem hohen Systemdruck ausgesetzt ist, aus kinematischen und dynamischen Gründen keine Feinstpartikel aus dem Öl entfernen. Um den Vorteil des Hauptstromfilters - Einbau im Hauptstrom - mit unseren exzellenten Filterergebnissen zu kombinieren, haben wir das Einbausystem C 1000 ES entwickelt. Mittels eines Steuerblocks der u.a. aus einem Druckreduzierventil und einer Volumenstromregelung besteht, filtern wir im Hauptstrom mit den Ergebnissen, die sogar in der Raumfahrt langjährig anerkannt sind. Einbausysteme für Druckleitungen • Auch in Edelstahl oder Kunststoffbeschichtung erhältlich • Feinstfilterung im Hauptstrom bis 1 μm Partikelgröße • Systemdruck bis 360 bar möglich • Konstruktiv einfach einzubinden, da der Steuerblock am Gehäuse installiert ist • Inklusive Manometer zur Element- und Druckkontrolle • Einschließlich aller Befestigungselemente Technische Daten Einbausystem C 1000 ES Mikro-Feinstfiltrationssystem für Druckleitungen bis 360 bar Maße: Durchmesser: 200 mm Höhe: 740 mm Gewicht: 12,3 kg (inkl. Filterelement & Manometer) Sicherheits-Steuerblock mit Volumenstrom- Reduzier- und Druckminder-Ventil. Zwangsweise rein axialer Durchfluss des Öls Durchfluss: rd. 850 Liter/ Stunde (voreingestellt)
Prüfung von Gasflaschen

Prüfung von Gasflaschen

Prüfung von Gasbehältern, Akustische Emission, NDT Prüfung,
Strömungssimulation

Strömungssimulation

Simulationen zur Optimierung der Strömungsverhältnisse in Wärmetauschern. Die THERMO-GAS Wärmetauscher arbeiten optimal, wenn die gleichmäßige Anströmung der Gasströme in den Wärmetauscher gewährleistet ist. Bei ungünstigen Aufstellungsbedingungen wurde bislang durch Versuche und Messungen eine Optimierung der Strömungsverhältnisse angestrebt. Aufgrund höherer Ansprüche an die Leistung der Wärmetauscher sowie erweiterter Einsatzgebiete wurde es notwendig, bereits in der Planungs- phase optimierte Ergebnisse zu erzielen. Das geschieht mittels einer CAD - gestützten Simulation. Diese ermöglicht eine sehr exakte Vorhersage bezüglich der Strömungsverhältnisse. Die Leistungsmöglichkeiten unserer Wärme-tauscher werden als Folge der entsprechenden Einbauten zur Strömungsführung bestmöglich ausgenutzt. Unser Know-how stellen wir Ihnen gern auch außerhalb der Wärmetauschertechnologie zur Verfügung. Das konkrete Projekt Bei einer Anlage für die katalytische Verbrennung wurde aufgrund des Einbaus einer THERMO-AWT 3 Wege Prozessluftklappe die Anschlußhaube deutlich verkürzt. Nach dieser Änderung wurde die berechnete Leistung des THERMO-GAS Wärmetauschers nicht mehr erreicht. Die Differenz war mit ca. 20% ermittelt worden. Die Anschlußhaube wurde mit Leitblechen ausgestattet, deren Ausführung anhand mehrerer Simulationen definiert wurde.Die Strömungsverhältnisse vor dem Umbau der Anschlußhaube sind im Bild links dargestellt,
Verformungslager VG1

Verformungslager VG1

PGslide® Verformungs- Gleitlager, geführt Verformungslager VG1 PGslide® Verformungs- Gleitlager, geführt -abweichende Lasten und Abmessungen nach Kundenwunsch
Chemie

Chemie

Reagenzien Spezielle Reagenzien für die Analytik sind in der Gruppe Gnoste zusammengefasst. Vom pharmazeutischen Wirkstoff (Active Pharmaceutical Ingredient API) bis zum fertigen Arzneimittel. -Amin-Komplexe Angepasste BF -Amin-Komplexe für die Kunststoffindustrie zur Herstellung von Epoxydharzen
Automatisierung von Transferpressen

Automatisierung von Transferpressen

Misati ist Technologieführer für Transferpressen. 35 Teile pro Minute sind Realität! Daher ist unsere neue Reihe von ultraleichten Transfereinrichtungen: -Produktiver -Günstiger -Zuverlässiger Misati ist ein weltweiter Technologieführer bei Systemen und Elementen für Transferpressen. Wir forschen und entwickeln neue Produkte, um die Anforderungen unserer Kunden zu erfüllen: Leichtere und zuverlässigere Transfers, die bei minimalen Kosten mehr Bogen pro Minute produzieren. Mit unseren leichten Transfers ist die Herstellung von 35 Teilen pro Minute mit einer Transferpresse für unsere Kunden Realität geworden.
Potenzielle Probleme mit Kondensation im Blow-by-Filter

Potenzielle Probleme mit Kondensation im Blow-by-Filter

Bildung einer zähflüssigen Wasser-Öl-Emulsion Behinderung der Öldrainage Korrosionsgefahr Einleitung von Kondensat in den Ölsumpf
NUKLEIERUNGSMITTEL für Polypropylen

NUKLEIERUNGSMITTEL für Polypropylen

HECOPLAST bietet künftig eine Reihe von beta-Nukleierungsmasterbatches an, welche für die Bildung einer hohen beta-Phasenkristallinität in thermogeformten, spritzgegossenen und extrudierten Polypropylen-Anwendungen entwickelt worden sind. Den Anfang der Reihe macht unser HECO beta NUK 401 PP, welches eigens für Rohrhersteller konzipiert wurde. Nachfolgend sehen Sie mikroskopische Aufnahmen von nicht-nukleiertem PP und mit unserem HECO beta NUK 401 PP nukleiertem PP. Zudem wurde die Charpy & Izod-Schlagzähigkeit bestimmt. Mikroskopische Aufnahme von iPP ohne HECO β NUK 401 PP Mikroskopische Aufnahme von iPP mit 1% HECO β NUK 401 PP Charpy & Izod-Schlagzähigkeit bei Raumtemperatur: Es wurden die Charpy- (gekerbt, nach ISO 179/1eA) und Izod-Schlagzähigkeit (gekerbt, nach ISO 180/1A) jeweils bei Raumtemperatur gemessen. Mit HECO β NUK 401 PP erhöht sich die Charpy-Schlagzähigkeit von Polypropylen (MFI = 0,3) um 84 % im Vergleich zum reinen Polypropylen und die Izod-Schlagzähigkeit um 87 %. Charpy-Schlagzähigkeit bei 0°C: Zusätzlich wurde die Charpy-Schlagzähigkeit (gekerbt, nach ISO 179/1eA) bei 0 °C gemessen. Hier steigt die Charpy-Schlagzähigkeit im mit HECO β NUK 401 PP nukleiertem Polypropylen um 28 %.
Spaltrohrmotorpumpen für Kältetechnik

Spaltrohrmotorpumpen für Kältetechnik

Das Anwendungsraster schließt Förderhöhen bis 180 m, Volumenströme von 1,0 bis 85 m3/h, Fluidtemperaturen von –50°C bis +90°C, Leistungsstärken von 1 bis 19 kW und Druckstufen von 25 bis 40 bar ein. Unser vielgenutztes Pumpenauslegetool für die Kältetechnik unterstützt Sie bei der einfachen Konfiguration und Auslegung einer passenden Pumpe.
Design, Prototyping und Herstellung

Design, Prototyping und Herstellung

Unsere Lösungen umfassen Hardware und Software, aber auch mechanische Komponenten: Prüfstände für verschiedene Säulentypen Elektronik für Standard-SEMs Prototyping oder sich ändernde Elektroniken für F&E Ionenstrahl-Geräte Elektronenstrahl-Geräte Laser-Scanning-Gerät
Thermisches Beschichten - die Lösung für hochwertige, funktionelle Beschichtungen

Thermisches Beschichten - die Lösung für hochwertige, funktionelle Beschichtungen

Das Thermische Spritzen als Verfahrensgruppe bietet universelle Möglichkeiten zur Aufbringung verschiedener funktioneller Schichten, zur Reparatur oder auch zur Neufertigung von Bauteilen. Die GfE verfügt über mehr als 20jährige Erfahrungen auf dem Gebiet des Thermischen Spritzens und führt für nahezu alle Industriebereiche Lohnbeschichtungen aus. Unsere Erfahrungen und unser Know-How in der Werkstoff-, Schicht- und Technologieentwicklung ermöglichen uns, auch bei neuen Anwendungen unsere Kunden umfassend zu beraten und zielstrebig geeignete Beschichtungslösungen zu finden. Der neueste Stand der thermischen Spritztechnik sowie die Maschinenausstattung zur mechanischen Bearbeitung garantieren eine komplette sowie schnelle und zuverlässige Abwicklung Ihrer Aufträge.
Sichere, langzeitstabile Messung

Sichere, langzeitstabile Messung

Driftfreie Mittelwertsmessungen, kinetische Messungen, Monitoring, Überwachung etc. (durch in-Process-Justierung, Differenzwägetecnik).
HHP-Puffer u.-Federn

HHP-Puffer u.-Federn

Wirkungsweise HHP-Puffer Puffer Serie B1 Weitere B1-Modelle Puffer Serie B5 Puffer Serie BLS Anwendungsbeispiele Puffer Wirkungsweise HHP-Federn Anwendungsbeispiele Federn
Reaktive Polymere & Flammschutzmittel

Reaktive Polymere & Flammschutzmittel

Außergewöhnliche chemische Zusätze machen Klebstoffe und Reaktionsharze zu Hochleistungswerkstoffen Klebstoffe und Matrixharze lassen sich lassen sich unter Verwendung von reaktiven chemischen Zusätzen wirkungsvoll modifizieren, so dass technische Eigenschaften wie z.B. Schlagzähigkeit, Flexibilisierung und Klebkraft oder Brandverhalten signifikant verbessert werden, um so eine breit gefächerte Palette von Anforderungsprofilen zu erfüllen. Besonders gebräuchlich sind diese Additive in reaktiven Formulierungen für Klebstoffe, Prepregs und Epoxidharz-Mischungen für Composites sowie für Beschichtungssysteme und Gießharze. Unsere Zusätze sind mit allen konventionellen Epoxy,- Polyester und Polyurethanharzen einsetzbar. Unser umfassendes Produktprogramm aus Flammschutzmitteln, Additiven zur Steigerung der Klebrigkeit (Tackifier) und Schlagzähigkeit (Toughener), Flexibilisatoren, biobasierten Polyesterharzen bis hin zu Komplettsystemen für die Composite-Industrie bietet Lösungen für unterschiedlichste Produkte und Anwendungsindustrien. Kundenspezifische „Tailor-made"-Produkte entwickeln wir in vertrauensvoller, direkter Zusammenarbeit mit Ihnen als Kunde und verbinden dabei Ihre Anforderungen mit unserem Knowhow. Auf aktuelle Marktbedürfnisse und neue technische Herausforderungen reagieren wir mit einem hohen Maß an Flexibilität und erreichen dadurch ein hohes Maß an Kundenzufriedenheit und Kundenverbundenheit. Klebstoffzusätze Flammschutzmittel Tackifier & Flowcontrol Toughener Reaktivharze und Systeme Composites & Prepregs Produktsuche Suche in allen Anwendungen Biobasierte Reaktivharze Composites & Prepregs Flammschutzmittel Klebstoffzusätze POLYCAVIT® Elastomer modified epoxy POLYDIS® CTBN modified epoxy POLYDIS® Rubber modified tackifier POLYPHLOX® Flame retardant POLYVERTEC® Ready-made Reaktivharze und Systeme Tackifier & Flowcontrol Toughener Forschung & Entwicklung Anwendungstechnik Produktübersicht Modifier Produktübersicht Composite Systems
Kunststoffteile, technische

Kunststoffteile, technische

Antiwärmscheibe, Antiwärmescheiben Kantenschutzprofile Für fast jede Art von Kantenschutz bieten wir Ihnen eine Lösung. Aus unserem umfangreichen Lagerbestand erfolgt eine Abgabe auch in kleinen Mengen. Wir liefern auch: Kantenschutz mit Dichtprofil seitlich Kantenschutz mit Dichtprofil oben Kantenschutz mit Dichtprofil oben, geschlossen Kantenschutz mit Dichtlippe seitlich Kantenschutz mit Dichtlippe oben
Finite Elemente Methode (FEM)

Finite Elemente Methode (FEM)

Das Team von OC Engineers, erstellt für Ihre Kunden sorgfältige FEM Analysen. Das Ziel ist nicht nur die Berechnung zu erstellen, sondern auch Verbesserungsvorschläge zu Präsentieren und diese zu validieren. Auf folgende Analysemethoden haben wir uns spezialisiert: - Eigenfrequenzen und Eigenmodi - Strukturanalyse - Schwingungsanalyse (fremderregt) - Festigkeitsanalysen - Modellaufbereitung
Entwicklung von Abgasanlagen

Entwicklung von Abgasanlagen

Vom Krümmerflansch bis zur Endrohrblende Wir entwickeln Abgasanlagen unter Berücksichtigung von Motorleistung, Akustik, Lebensdauer und Kosten. Als Entwicklungspartner führender Automobilhersteller und Lieferanten begleiten wir den gesamten Produktentstehungsprozess zwischen Technik und Projektmanagement. Leistungsangebot Konzeptvorschläge für Vorentwicklung unter Beachtung von Baukastensystematik, Herstellverfahren, Befestigung und Montage, Gesetzeskonformität Abstimmung funktionaler Eigenschaften mit unseren Kunden bezüglich Qualitätssicherung, Festigkeit, Akustik, Montage, Kundendienst & Logistik Technische Vorbereitung PDM Blätter, Stücklistenfüllung, Systemfüllung Bauraumprüfung Lieferung von Prototypenteilen für Fahr- und Prüfstandsversuche sowie Rapid-Prototyping Akustikmuster bis zu Serienentwicklungen Integration von aktiven Geräuschreduzierungskomponenten (Gegenschall) strömungsoptimierte Rohrführungen Gestaltung von Endrohrblenden inklusive Prototyping Abgasanlage Positionierung im Fahrzeug Schalldämpfer Innerer Aufbau hinten Strömungssimulation (CFD) zur Optimierung der Geschwindigkeitsverteilung ein einem Abgasrohr Endrohrblende Simuliert im CAD Endrohrblende Simuliert im CAD Endrohrblende als fertiger Prototyp
Prallmühlen

Prallmühlen

Prallmühlen sind für ein breites Spektrum an Einsätzen konzipiert. Sie finden in der Rohmineralienaufbereitung wie beispielsweise bei Kalkstein, Dolomit, Sandstein und Schotter, als auch in der Verarbeitung von Baurestmassen wie Betonaufbruch, Ziegelsteinschutt oder bituminöse Materialien welche bei Renovierung von Straßen anfallen, Verwendung. Vorteile: - hoher Zerkleinerungsgrad, sehr gute Kubizität des Produktes - Feinheit der Zerkleinerung kann mittels FU reguliert werden - variable Konstruktionslösung für den Einsatz der HIC-Brecher in stationären- oder mobilen Einrichtungen - geschlossener Rotorkörper, fixierte Schlagleisten im Rotor - kompakte Lösung der federnden Einheiten und Einstellung des Spaltes der Schwenkbalken - hydraulisches Öffnen des Brechergehäuses vereinfacht den Zugang Prallmühlen Typen: - HIC: Zerkleinern geringe abrasive Materialien - FGB: Geringe abrasive Materialien mit einem maximalen Grad der Zerkleinerung Bildergalerie
Bearbeitung Gussprodukte

Bearbeitung Gussprodukte

Aufgrund unserer Erfahrungen und modernster Bearbeitungseinrichtungen realisieren wir Ihre individuellen Produktanforderungen in jeglicher Fertigungstiefe.
MATRIZEN (Pt/Au), HSL

MATRIZEN (Pt/Au), HSL

- Art.-Nr. 380 aus einer Platin-Gold-Legierung sind ausschließlich an EM-Legierungen angussfähig und an EM-, Pd-Basis- und NEM-Legierungen anlötbar
PCS Pressure Control System - Druckregeleinheit

PCS Pressure Control System - Druckregeleinheit

Das PCS ist in verschiedenen Ausführungen und Gehäusen vom Schalttafeleinbaugerät bis zum 19"-Einschub in IP20 aber auch spritzwassergeschützt (IP54) erhältlich. Die Druckregeleinheit Pressure Control System, kurz PCS, automatisiert bei Prüfaufgaben, Dauerlaufprüfung und Kalibrierung von Sensoren und Bauteilen mit Luft und Gasen die Druckmessung und -regelung durch einen sehr flexibel anpassbaren, modular aufgebauten und variantenreichen Prüfaufbau. Modularität im mechanischen Aufbau, in der Sensorik des Messsystems sowie in der flexibel konfigurierbaren Auswertungs-Software gewährleisten die Anpassung an verschiedenste Prüf- und Messaufgaben. Produktmerkmale Druckregeleinheit für Luft- und Gase Regelung auch von großen Durchflüssen Messbereichs-Endwerte von 1 mbar bis 16 bar Mess- und Regel-Spanne von 1:10, erweitert 1:100 10 frei konfigurierbare Prüfprogrammspeicher Auswertung von bis zu 2 Regelstrecken gleichzeitig Verwendbare Typen von Regelventilen: alle Mess- und Regelgenauigkeit ≤±0,1% vom Endwert Prüftemperatur -10 bis +70°C Schnittstellen: RS232, RS485, Ethernet TCP/IP Digitale Ein-/Ausgänge zur SPS-Kommunikation und zur Ansteuerung von Aktoren (z. B. Magnetventile) Modularer und kompakter Aufbau: Geschlossene wie auch offene Systeme mit großer Durchflussleistung können unter Verwendung verschiedener Regelventile schnell und hysteresfrei ausgeregelt werden. Druckregelung mit dem Pressure Control System: schnell und genau!
FEM-Berechnung und Strukturoptimierung

FEM-Berechnung und Strukturoptimierung

Basierend auf den Ergebnissen der FEM-Berechnung (FE-Simulation) sind wir in der Lage, Ihre Bauteile mit verschiedenen Methoden der Strukturoptimierung zu optimieren. Nahezu alle Bauteile technischer Strukturen lassen sich mit den Werkzeugen der Strukturoptimierung wirkungsvoll verbessern. Die FEMopt Studios GmbH bietet ihren Kunden eine spezifische Bauteiloptimierung an, bei der die Kundenanforderungen gezielt berücksichtigt werden können. Unsere Leistungen unterstützen unsere Kunden in vielfältiger Art und Weise: - Die Optimierungsergebnisse dienen unseren Kunden als Entscheidungshilfe für eine optimale Bauteilauslegung. Mit diesen Ergebnissen begleiten wir die Entwicklungsprozesse unserer Kunden von der frühen Entwurfsphase bis zum endgültigen Produkt. - Durch die Berücksichtigung der Optimierungsergebnisse im Entwurfsprozess werden die Potentiale der Bauteile optimal ausgeschöpft, ungewollte Redundanzen vermieden und der Entwurfsprozess beschleunigt. - Durch die fast vollständig automatisierten Verfahren können Varianten in sehr effizienter Art und Weise untersucht werden. Das ermöglicht ein fundiertes Verständnis für das spezielle Bauteil unter den gegebenen Anforderungen und sichert Entwurfsprozesse ab. Der Einsatz der Strukturoptimierung im Designprozess führt zu besseren Produkten, geringeren Kosten und kürzeren Entwicklungszeiten! Haben Sie weitere Fragen? Kontaktieren Sie einfach unsere Experten! Wir helfen Ihnen gerne weiter.
Messungen zur Optimierung von Drehstrommaschinen

Messungen zur Optimierung von Drehstrommaschinen

Messaufgaben Für die Optimierung der Magnetkreise leistungsstarker Drehstrom-Synchronmaschinen und Drehstrom-Asynchronmaschinen wurden in enger Zusammenarbeit mit einem Hersteller parallel EPSTEIN-Proben Ringkern-Proben untersucht. Bestimmt wurden die Hystereseverluste P(J)Hyst. im quasistatischen Gleichfeld die frequenzabhängigen Magnetisierungskennlinien J(H) bis Hmax ≈ 30.000A/m die frequenzabhängigen dynamischen Ummagnetisierungsverluste P(J) bei Frequenzen von 50Hz und 60Hz und den jeweiligen 3./5./7. Oberwellen Die dynamischen Ummagnetisierungsverluste wurden ermittelt bei sinusförmigem Zeitverlauf J(t) = J^*sinωt bei trapezförmigem Zeitverlauf J(t) bei weiteren Zeitverläufen J(t) der Polarisation. Ergebnisse (Auswahl) J(H)-Magnetisierungskennlinien Erwartungsgemäß unterscheiden sich die J(H)-Magnetisierungskennlinien der EPSTEIN-Proben von denen der Ringkern-Proben im Bereich unterhalb des Knies. Im dargestellten Untersuchungsbeispiel werden für Austeuerungen J > 1,50T die J(H)-Kennlinien unabhängig von der Form der Probe unabhängig von der Frequenz P(J)-Verlustkennlinien Schwerpunkte dieser Untersuchungen waren die Bestimmung der frequenzabhängigen Verlustkennlinien P(J,f) der Verlustkennlinien bei unterschiedlichen Zeitverläufen der Flussdichte B(t) Wie bei der J(H)-Kennlinie auch gab es unterschiedliche P(J)-Kennlinien für die EPSTEIN- und die Ringkern-Proben. Für den Auftraggeber war insbesondere der Kennlinienverlauf bei hohen Aussteuerungen (J > 1,5 T) von Interesse. Verlustmessungen bei trapezförmiger Polarisation Die Übertragung der gemessenen Verlustwerte P(J) auf die i. allg. inhomogen ausgesteuerten Magnetkreise in den elektrischen Maschinen ist problematisch. So ist z. B. der bei Verlustmessungen durch den Standard vorgegebene sinusförmige Zeitverlauf der Flussdichte B(t) = B^ sin(ω t) i. d. R. nicht charakteristisch für die Betriebsbedingungen. U. a. aus diesem Grunde wurden zusätzlich die Verluste P(J) bei davon abweichenden Zeitverläufen J(t) bzw. B(t) bestimmt. Die Untersuchungen werden am Beispiel einer Verlustmessung mit Flussdichten B(t) mit trapezförmigem Zeitverlauf erläutert. Charakteristisch für den trapezförmigen Zeitverlauf der Polarisation sind die Flanken mit einem konstanten Anstieg dΦ/dt ~ dJ(t)/dt ≈ const. das Plateau bei J = J^ = const. mit einem Anstieg dΦ/dt ~ dJ(t)/dt = 0 Die Ummagnetisierungsvorgänge erfolgen in den Flankenanstiegen, die Ummagnetisierungsverluste hängen entsprechend stark von den Anstiegen dJ(t)/dt ab. Die Zeitabschnitte mit dynamischer Magnetisierung (Hysterese – & Wirbelstromverluste) mit statischer Magnetisierung (Hystereseverluste) können getrennt ausgewertet werden. Sowohl die gemessenen Magnetisierungskennlinien J(H) wie auch die Verlustkennlinien P(J) konnten mathematisch sehr gut beschrieben werden. In Zusammenarbeit mit einem Motorenhersteller wurden die – J(H)-Magnetisierungskennlinien – P(J)-Verlustkennlinien der eingesetzten Elektrobänder bestimmt. Gemessen wurde an streifenförmigen EPSTEIN- und an Ringkern-Proben. Durch Variation der Messparameter wurden die Magnetisierungsbedingungen den Kernen der E-Maschinen angenähert. Mit den nach Abschluss der Untersuchungen mathematisch formulier-ten Kennlinien werden die magnetischen Eigenschaft